NAME:_____

$$E + S \underset{k_{-1}}{\overset{k_1}{\Leftrightarrow}} ES \xrightarrow{k_2} E + P$$

- **1.** Define the equilibrium dissociation constant (K_D) for the enzymesubstrate complex (ES) in terms of concentrations of *E*, *S*, *ES*, and/or *P*.
- 2. Define the Michaelis constant (K_M) in terms of concentrations of *E*, *S*, *ES*, *and/or P*.

a.
$$\frac{d[P]}{dt} =$$

b.
$$\frac{d[ES]}{dt} =$$

c. use the steady-state approximation to solve for [ES]

d. replace $\frac{(k_{-1}+k_2)}{k_1}$ with K_M.

e. Rearrange the expression to isolation K_M.

[Bonus: 5 pts]

- f. Compare your expressions for K_D and $K_{M.}$. These two parameters are not equal to each other. Why?
- 3. Describe how to quickly determine the K_M from a plot of initial rates verses [substrate].